Rings whose free modules satisfy the ascending chain condition on submodules with a bounded number of generators

Maria Elisa Antunes Simões ${ }^{\text {a }}$, Patrick F. Smith ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
${ }^{\text {b }}$ Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK
Communicated by C.A. Weibel; received 6 March 1995; revised 19 March 1996

Abstract

Let R be a ring such that every finitely generated free (respectively, every free) right R-module satisfies the ascending chain condition on n-generated submodules for every positive integer n; then any ring Morita equivalent to R has the same property. This is in contrast to rings R which satisfy the ascending chain condition on n-generated right ideals, for some fixed positive integer n, for in this case rings Morita equivalent to R need not have the same property. If R is a right and left Ore domain and n is a positive integer such that the free right R-module $R_{R}^{(n)}$ satisfies the ascending chain condition on n-generated submodules then so too does every free right R-module. Many examples are given of rings for which every finitely generated free (respectively, every free) right module satisfies the ascending chain condition on n-generated submodules, for some positive integer n. (C) 1998 Elsevier Science B.V.

AMS Classification: 16P70, I6D90, 16U20, 16D40, 16P20

1. Morita equivalence

Throughout this note, all rings are associative with identity and all modules are unital right modules. Let n be a positive integer. We say that a module M satisfies n-acc if every ascending chain of n-generated submodules terminates. If the module M satisfies n-acc for every positive integer n, then we shall say that M satisfies pan-acc. We shall say that the ring R satisfies right n-acc (respectively, right pan-acc) if the right

[^0]R-module R satisfies n-acc (pan-acc). For information about any terms used without explanation, see [1] or [9].

Let R be any ring and let m, n be positive integers. Let $\mathscr{M}_{n}(R)$ denote the ring of all $n \times n$ matrices with entries in R and let $\mathscr{M}_{m \times n}(R)$ denote the additive Abelian group of all $m \times n$ matrices with entries in R. Let S denote the ring $\mathscr{M}_{n}(R)$. Clearly $\mathscr{M}_{m \times n}(R)$ is a right S-module with respect to matrix multiplication. Given elements $a_{i j} \in R(1 \leq i \leq m, 1 \leq j \leq n)$, let $\left(a_{i j}\right)$ denote the $m \times n$ matrix

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

in $\mathscr{A}_{m \times n}(R)$.
Let F denote the free right R-module $R_{R}^{(m)}$. Let N and L be any n-generated R-submodules of F. There exist $a_{i j}, b_{i j} \in R(1 \leq i \leq m, 1 \leq j \leq n)$ such that

$$
N=\left(a_{11}, \ldots, a_{m 1}\right) R+\cdots+\left(a_{1 n}, \ldots, a_{m n}\right) R
$$

and

$$
L=\left(b_{11}, \ldots, b_{m 1}\right) R+\cdots+\left(b_{1 n}, \ldots, b_{m n}\right) R
$$

Lemma 1.1. With the above notation, $N \subseteq L$ if and only if there exists $\left(c_{i j}\right)$ in S such that $\left(a_{i j}\right)=\left(b_{i j}\right)\left(c_{i j}\right)$.

Proof. $N \subseteq L$ if and only if there exist elements $c_{i j} \in R(1 \leq i, j \leq n)$ such that

$$
\left(a_{1 j}, \ldots, a_{m j}\right)=\left(b_{11}, \ldots, b_{m 1}\right) c_{1 j}+\cdots+\left(b_{1 n}, \ldots, b_{m n}\right) c_{n j}
$$

for each $1 \leq j \leq n$, and this holds if and only if

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{m 1} & \cdots & b_{m n}
\end{array}\right]\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]
$$

With N as above, we define $\alpha(N)=\left(a_{i j}\right) S$, i.e. $\alpha(N)$ is the set of $m \times n$ matrices over R such that the transpose of each column is in N. Note that by Lemma 1.1, $\alpha(N)$ is independent of the choice of n-generating set for N. Moreover, Lemma 1.1 gives at once:

Corollary 1.2. With the above notation, let $N \subseteq L$ be n-generated R-submodules of F. Then $\alpha(N) \subseteq \alpha(L)$.

Now suppose that $a=\left(a_{i j}\right) \in \mathscr{M}_{m \times n}(R)$, where $a_{i j} \in R(1 \leq i \leq m, 1 \leq j \leq n)$. We define

$$
\beta(a S)=\left(a_{11}, \ldots, a_{m 1}\right) R+\cdots+\left(a_{1 n}, \ldots, a_{m n}\right) R
$$

Note that Lemma 1.1 shows that if $a, b \in \mathscr{A}_{m \times n}(R)$ with $a S=b S$ then $\beta(a S)=\beta(b S)$. Thus, for each a in $\mathscr{A}_{m \times n}(R), \beta(a S)$ is a well-defined n-generated R-submodule of F. Moreover, Lemma 1.1 gives at once:

Corollary 1.3. Let $a, b \in \mathscr{A}_{m \times n}(R)$ with $a S \subseteq b S$. Then $\beta(a S) \subseteq \beta(b S)$.
Lemma 1.4. With the above notation, $\beta \alpha(N)=N$ for every n-generated R-submodule N of F and $\alpha \beta(a S)=a S$ for every $a \in \mathscr{M}_{m \times n}(R)$.

Proof. Clear.

Theorem 1.5. Let R be any ring and let m and n be positive integers. Then the free right R-module $R_{R}^{(m)}$ satisfies n-acc if and only if the right $\mathscr{M}_{n}(R)$-module $\mathscr{M}_{m \times n}(R)$ satisfies 1-acc.

Proof. Clear by the above results.
Corollary 1.6. Let R be any ring and let n be any positive integer. Then the ring $\mathscr{M}_{n}(R)$ satisfies right 1-acc if and only if the free right R-module $R_{R}^{(n)}$ satisfies n-acc.

Proof. Take $m=n$ in the theorem.
Corollary 1.7. Let R be any ring and let n be any positive integer such that the ring $\mathscr{M}_{n}(R)$ satisfies right 1-acc. Then R satisfies right n-acc.

Proof. By Corollary 1.6.
Heinzer and Lantz [7, Section 4] show that for every positive integer n there exists a commutative ring R_{n} such that R_{n} satisfies n-acc but R_{n} does not satisfy ($n+1$)acc. Thus $\mathscr{A}_{n+1}\left(R_{n}\right)$ does not satisfy 1-acc (Corollary 1.7). This shows that for any positive integer n, matrix rings over rings which satisfy right n-acc need not themselves satisfy right n-acc, and in particular "satisfying right n-acc" is not a Morita invariant.

Let R be any ring and let $S=\mathscr{M}_{n}(R)$, for any positive integer n. For each $1 \leq i$, $j \leq n$, let $e_{i j}$ denote the matrix in S with (i, j) th entry 1 and all other entries 0 . Let F be a free right S-module with basis $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$. Then F is a free right R-module with basis $\left\{f_{\lambda} e_{i j}: \lambda \in A, 1 \leq i, j \leq n\right\}$, and if N is any m-generated S-submodule of F, say $N=x_{1} S+\cdots+x_{m} S$ then N is an $m n^{2}$-generated R-submodule of F, because $N=\sum_{i} \sum_{j} \sum_{k} x_{k} e_{i j} R$. This gives the following result.

Lemma 1.8. Let R be any ring such that every (finitely generated) free right R-module satisfies pan-acc. Let n be any positive integer. Then every (finitely generated) free right $\mathscr{M}_{n}(R)$-module satisfies pan-acc.

Theorem 1.9. The following statements are equivalent for a ring R :
(i) For each positive integer n, the ring $\mathscr{M}_{n}(R)$ satisfies right pan-acc.
(ii) For each positive integer n, the ring $\mathscr{M}_{n}(R)$ satisfies right 1-acc.
(iii) Every finitely generated free right R-module satisfies pan-acc.
(iv) For each positive integer n, every finitely generated free right $\mathscr{M}_{n}(R)$-module satisfies pan-acc.

Proof. (i) \Rightarrow (ii): Clear.
(ii) \Rightarrow (iii): Let m be any positive integer and let $F=R_{R}^{(m)}$. Let n be any positive integer. By hypothesis, the ring $\mathscr{A}_{m+n}(R)$ satisfies right 1-acc. By Corollary $1.6, R_{R}^{(m+n)}$ satisfies $(m+n)$-acc. Hence F satisfies n-acc. It follows that F satisfies pan-acc. This proves (iii).
(iii) \Rightarrow (iv): By Lemma 1.8.
(iv) \Rightarrow (i): Clear.

Renault [11] gives an example of a right Noetherian ring R with the property that if F is the free right R-module of countably infinite rank then F does not satisfy 1-acc. Thus every finitely generated free right R-module is Noetherian and hence satisfies panacc but not every free right R-module satisfies pan-acc. If we assume in Theorem 1.9 that the ring R has additional properties then we can say more.

Corollary 1.10. Let R be a right Goldie ring which satisfies dcc on right annihilators. Then the following statements are equivalent:
(i) For each positive integer n, the ring $\mathscr{M}_{n}(R)$ satisfies right pan-acc.
(ii) For each positive integer n, the ring $\mathscr{M}_{n}(R)$ satisfies right 1-acc.
(iii) Every free right R-module satisfies pan-acc.
(iv) For each positive integer n, every free right $\mathscr{M}_{n}(R)$-module satisfies pan-acc.

Proof. By Theorem 1.9 and [4, Theorem 1].
In particular, Corollary 1.10 holds for any right nonsingular right Goldie ring (see [4] or [3, Theorem 1.5]).

Lemma 1.11. Let T be a ring, let e be an idempotent in T and let R be the subring $e T e$ of T. Let n be any positive integer.
(i) If T satisfies right n-acc then so too does R.
(ii) If every (finitely generated) free right T-module satisfies n-acc then so too does every (finitely generated) free right R-module.

Proof. (i) See [5, Proposition 4.6].
(ii) Let F be any free right R-module. Without loss of generality we can take $F=R_{R}^{(\Lambda)}$, for some index set Λ. We can think of F as an R-submodule of the free right T-module $G=T_{T}^{(A)}$, in a natural way. Let N be any n-generated R-submodule
of F, say $N=x_{1} R+\cdots+x_{n} R$. Then

$$
N T=x_{1} R T+\cdots+x_{n} R T=x_{1} T+\cdots+x_{n} T \subseteq N T
$$

so that $N T$ is an n-generated T-submodule of G.
Let $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ be any ascending chain of n-generated R-submodules of F. Then, by the above remarks, $N_{1} T \subseteq N_{2} T \subseteq N_{3} T \subseteq \cdots$ is an ascending chain of n-generated T-submodules of G. By hypothesis, there exists a positive integer k such that $N_{k} T=N_{k+1} T=N_{k+2} T=\cdots$. Let $i \geq k$. Then $N_{k}=N_{k} R=N_{k}(e T e)=$ $N_{k} T e=N_{i} T e=N_{i}$. That is, $N_{k}=N_{k+1}=N_{k+2}=\cdots$. It follows that F satisfies n-acc.

Theorem 1.12. Let R be a ring such that every (finitely generated) free right R-module satisfies pan-acc. Let T be a ring Morita equivalent to R. Then every (finitely generated) free right T-module satisfies pan-acc.

Proof. By Lemmas 1.8 and 1.11.

Let R be a ring which satisfies right pan-acc and let T be a ring Morita equivalent to R. Does T satisfy right pan-acc? By Theorem 1.12, this is certainly the case if every finitely generated free right R-module satisfies pan-acc. Heinzer and Lantz conjecture that if a ring R satisfies right pan-acc then every finitely generated free right R-module satisfies pan-acc, but this is still open according to Bonang [5] (see also [6, Ex. 0.1]). We shall return to this question in the next section.

2. Domains with n-acc

The purpose of this section is to give a proof of the main result of this paper, namely:

Theorem 2.1. Let R be a left and right Ore domain and let n be a positive integer such that the free right R-module $R_{R}^{(n)}$ satisfies n-acc. Then every free right R-module satisfies n-acc.

Combining this theorem with our remarks at the end of the previous section we see that if R is a left and right Ore domain such that for every positive integer n, the free right R-module $R_{R}^{(n)}$ satisfies n-acc then every ring Morita equivalent to R satisfies right pan-acc.

In order to prove Theorem 2.1 we first prove a number of lemmas.
Lemma 2.2. Let D be a division ring and let $a \in \mathscr{M}_{m \times n}(D)$ where m and n are positive integers and $m>n$. Then there exists a unit p in $\mathscr{A}_{m}(D)$ such that the last $(m-n)$ rows of pa are all zero.

Proof. The result is trivial if $a=0$. Suppose that $a \neq 0$. Suppose that $n=1$. Then

$$
a=\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right]
$$

Now $a_{i 1} \neq 0$ for some $1 \leq i \leq m$. If $i=1$ let $p_{1}=a_{11}^{-1} e_{11}+\sum_{k \neq 1} e_{k k}$; otherwise let

$$
p_{1}=e_{i 1}+a_{i 1}^{-1} e_{1 i}+\sum_{k \neq i, 1} e_{k k} \in \mathscr{M}_{m}(D)
$$

Then p_{1} is a unit in $\mathscr{A}_{m}(D)$ and $p_{1} a$ has first entry 1 . Thus without loss of generality $a_{11}=1$. Now let

$$
p=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
-a_{21} & 1 & 0 & 0 & \cdots & 0 \\
-a_{31} & 0 & 1 & 0 & \cdots & 0 \\
. & . & . & . & \cdots & . \\
. & . & . & . & \cdots & . \\
. & . & . & . & \cdots & . \\
-a_{m 1} & 0 & 0 & 0 & \cdots & 1
\end{array}\right] \in \mathscr{M}_{m}(D)
$$

Then p is a unit in $\mathscr{M}_{m}(D)$ with inverse

$$
p^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
a_{21} & 1 & 0 & 0 & \cdots & 0 \\
a_{31} & 0 & 1 & 0 & \cdots & 0 \\
. & . & . & . & \cdots & . \\
. & . & . & . & \cdots & . \\
. & . & . & . & \cdots & . \\
a_{m 1} & 0 & 0 & 0 & \cdots & 1
\end{array}\right] .
$$

Moreover,

$$
p a=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \text {. }
$$

This proves the result when $n=1$.
Now suppose that $n \geq 2$. Let a_{1} be the $m \times(n-1)$ matrix over D and let b be the $m \times 1$ matrix over D such that $a=\left[a_{1} \mid b\right]$ (in the obvious notation). By induction there exists a unit q_{1} in $\mathscr{M}_{m}(D)$ such that $q_{1} a_{1}$ has last $m-(n-1)$ rows zero. It follows that

$$
q_{1} a=\left[q_{1} a_{1} \mid q_{1} b\right]=\left[\begin{array}{ll}
c & d \\
e & f
\end{array}\right]
$$

where c, d, e, f are, respectively, an $(n-1) \times(n-1)$ matrix, an $(n-1) \times$ matrix, the zero $(m-(n-1)) \times(n-1)$ matrix and an $(m-(n-1)) \times 1$ matrix over D. If $f=0$ then the result is proved. If $f \neq 0$ then we can argue as in the case $n=1$ to produce a unit q_{2} in $\mathscr{A}_{m}(D)$ such that

$$
q_{2} q_{1} a=\left[\begin{array}{ll}
c & d \\
e & g
\end{array}\right]
$$

where g is the $(m-(n-1)) \times 1$ matrix with first entry 1 and all other entries zero. Thus, if $p=q_{2} q_{1}$ then p is a unit in $\mathscr{M}_{m}(D)$ and the last $(m-n)$ rows of $p a$ are zero, as required.

The proof of the next result is quite elementary. Recall that if R is a left Ore domain with left quotient division ring D then any element in D can be written in the form $c^{-1} r$ where $r \in R, 0 \neq c \in R$. It is well known that if n is a positive integer and $q_{i} \in D(1 \leq i \leq n)$ then there exist $r_{i} \in R(1 \leq i \leq n), 0 \neq d \in R$ such that $q_{i}=d^{-1} r_{i}(1 \leq i \leq n)$. This gives the following result.

Lemma 2.3. Let R be a left Ore domain with left quotient division ring D and let m be a positive integer. Let p be any unit in $\mathscr{M}_{m}(D)$. Then there exists a nonzero element c in R such that $c p \in \mathscr{M}_{m}(R)$.

In the next result we return to the situation considered in Section 1 . Let R be any ring and let m and n be positive integers. Let S denote the ring $\mathscr{M}_{n}(R)$ and let α be the mapping from the collection of n-generated submodules of the free right R-module $F=R_{R}^{(m)}$ to the collection of cyclic S-submodules of $\mathscr{M}_{m \times n}(R)$, as defined in Section 1 .

Lemma 2.4. With the above notation, let $N \subseteq L$ be n-generated R-submodules of F such that N is an essential submodule of L. Then $\alpha(N)$ is an essential S-submodule of $x(L)$.

Proof. Let $L=\left(b_{11}, \ldots, b_{m 1}\right) R+\cdots+\left(b_{1 n}, \ldots, b_{m n}\right) R$, and let $\left(b_{i j}\right)$ be the corresponding matrix in $\mathscr{M}_{m \times n}(R)$. Let $s=\left(c_{i j}\right) \in S$, where $c_{i j} \in R(1 \leq i, j \leq n)$, such that $\left(b_{i j}\right) s$ $\neq 0$. There exists $1 \leq k \leq n$ such that the k th column of $\left(b_{i j}\right) s$ is not zero. Thus

$$
0 \neq x=\left(b_{11}, \ldots, b_{m 1}\right) c_{1 k}+\cdots+\left(b_{1 n}, \ldots, b_{m n}\right) c_{n k} \in L
$$

There exists $r \in R$ such that $0 \neq x r \in N$. Let $t=r e_{k k} \in S$. Then $0 \neq\left(b_{i j}\right) s t \in \alpha(N)$. It follows that $\alpha(N)$ is essential in $\alpha(L)$.

We shall require the following special case of Lemma 2.4.
Corollary 2.5. With the above notation, let R be a semiprime right Goldie ring. Let $N \subseteq L$ be n-generated R-submodules of F such that N is an essential submodule of L. Let a be any nonzero element of $\alpha(L)$. Then there exists a regular element c in R such that ac* $\in \alpha(N)$, where c^{*} is the diagonal matrix in S with all diagonal entries c.

Proof. Let $a \in\left(b_{i j}\right) S$ (in the above notation). Let $a_{k}(1 \leq k \leq n)$ denote the columns of a. The proof of Lemma 2.4 shows that for each $1 \leq k \leq n$ there exists an essential right ideal E_{k} of R with

$$
\left[\begin{array}{lllllll}
0 & \ldots & 0 & a_{k} & 0 & \ldots & 0
\end{array}\right]\left(E_{k} e_{k k}\right) \subseteq \alpha(N)
$$

Let $E=E_{1} \cap \cdots \cap E_{n}$. Then E is an essential right ideal of R and hence E contains a regular element c of R [9, 2.3.4 and 2.3.5]. Now

$$
a c^{*}=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right] c^{*} \in \alpha(N) .
$$

Proof of Theorem 2.1. Let R be a left and right Ore domain with quotient division ring D. Let n be a positive integer such that the free right R-module $R_{R}^{(n)}$ satisfies n-acc. To prove that every free right R-module satisfies n-acc it is sufficient to prove that every finitely generated free right R-module satisfies n-acc (see, for example, [3, Theorem 1.5]).

Let m be any positive integer. Let $F=R_{R}^{(m)}$. If $m \leq n$ then F satisfies n-acc. Suppose that $m \geq n+1$. Let $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \cdots$ be any ascending chain of n-generated submodules of F. By [3, Lemma 1.1], for each $i \geq 1, N_{i}$ has uniform dimension at most n. Thus, without loss of generality we can suppose that N_{1} is essential in N_{i} for all $i \geq 1$.

By Corollary $1.2, \alpha\left(N_{1}\right) \subseteq \alpha\left(N_{2}\right) \subseteq \alpha\left(N_{3}\right) \subseteq \cdots$ is an ascending chain of cyclic S-submodules of $\mathscr{M}_{m \times n}(R)$, where $S=\mathscr{M}_{n}(R)$. For each $i \geq 1$, let $a_{i} \in \mathscr{M}_{m \times n}(R)$ such that $\alpha\left(N_{i}\right)=a_{i} S$. By Lemmas 2.2 and 2.3 there exist a unit p in $\mathscr{M}_{m}(D)$ and a nonzero element c in R such that $c p \in \mathscr{M}_{m}(R)$ and $c p a_{1}$ has its last ($m-n$) rows all zero. By Corollary 2.5 , for each $i \geq 1$, there exists a nonzero element d_{i} in R such that $c p a_{i} d_{i}^{*} \in c p a_{1} S$. Thus the last ($m-n$) rows of $c p a_{i} d_{i}^{*}$ are zero and hence the last ($m-n$) rows of $c p a_{i}$ are zero.

Consider the ascending chain $c p a_{1} S \subseteq c p a_{2} S \subseteq c p a_{3} S \subseteq \cdots$ in $\mathscr{M}_{m \times n}(R)$. By Corollary $1.3 \beta\left(c p a_{1} S\right) \subseteq \beta\left(c p a_{2} S\right) \subseteq \beta\left(c p a_{3} S\right) \subseteq \cdots$ is an ascending chain of n-generated submodules of F. Moreover, for each $i \geq 1, \beta\left(c p a_{i} S\right)$ is contained in the submodule G of F consisting of all elements of F of the form $\left(r_{1}, \ldots, r_{n}, 0, \ldots, 0\right)$, where $r_{i} \in R(1 \leq i \leq n)$. But $G \cong R_{R}^{(n)}$ and hence, by hypothesis, G satisfies n-acc. Thus there exists a positive integer k such that $\beta\left(c p a_{k} S\right)=\beta\left(c p a_{k+1} S\right)=\beta\left(c p a_{k+2} S\right)=\cdots$ By Lemma 1.4, if we now apply α we have $c p a_{k} S=c p a_{k+1} S=c p a_{k+2} S=\cdots$ Now using the fact that $c \neq 0$ and p is a unit, we have $a_{k} S=a_{k+1} S=a_{k+2} S=\cdots$ Finally applying β we obtain $N_{k}=N_{k+1}=N_{k+2}=\cdots$ It follows that F satisfies n-acc.

If in Theorem 2.1 the ring R is commutative we can do rather better, as the next result shows. If $a \in \mathscr{M}_{n}(R)$, for any commutative ring R and positive integer n, then $\operatorname{det}(a)$ will denote the determinant of a.

Theorem 2.6. Let R be a commutative domain and let n be a positive integer such that the free R-module $R_{R}^{(n-1)}$ satisfies n-acc. Then every free R-module satisfies n-acc.

Proof. In view of Theorem 2.1 it is sufficient to prove that the free R-module $F=R_{R}^{(n)}$ satisfies n-acc. Let $S=\mathscr{M}_{n}(R)$ and let D denote the field of fractions of R. By Corollary 1.6, it is sufficient to prove that S satisfies right 1-acc. Let $a_{1} S \subseteq a_{2} S \subseteq$ $a_{3} S \subseteq \cdots$ be any ascending chain of nonzero principal right ideals of S. By the proof of Theorem 2.1, we can suppose without loss of generality that a_{1} has rank n, for otherwise there exists a unit p in $\mathscr{M}_{n}(D)$ and a nonzero element c in R such that $c p a_{i}$ has zero last row for all $i \geq 1$. Now $\operatorname{det}\left(a_{1}\right) R \subseteq \operatorname{det}\left(a_{2}\right) R \subseteq \operatorname{det}\left(a_{3}\right) R \subseteq \cdots$, so there exists a positive integer k such that $\operatorname{det}\left(a_{k}\right) R=\operatorname{det}\left(a_{k+1}\right) R=\operatorname{det}\left(a_{k+2}\right) R=\cdots$.

Note that for all $i \geq k, a_{k}=a_{i} b_{i}$ for some $b_{i} \in \mathscr{M}_{n}(R)$ and $\operatorname{det}\left(a_{k}\right) R=\operatorname{det}\left(a_{i}\right) R$. Since $\operatorname{det}\left(a_{k}\right)=\operatorname{det}\left(a_{i}\right) \operatorname{det}\left(b_{i}\right) \neq 0$, it follows that $\operatorname{det}\left(b_{i}\right)$ is a unit in R and hence b_{i} is a unit in $S=\mathscr{A}_{n}(R)$. Thus $a_{k} S=a_{k+1} S=a_{k+2} S=\cdots$. It follows that F satisfies $n-a c c$, as required.

Nicolas [10, Proposition 1.4] proved that if R is a commutative domain which satisfies 1 -acc then every free R-module satisfies 1 -acc. Now Theorem 2.6 gives at once:

Corollary 2.7. Let R be a commutative domain which satisfies 2-acc. Then every free R-module satisfies 2-acc.

3. Rings whose free modules have pan-acc

In this section, our concern is to give, in the spirit of [2,5], a range of examples of rings whose (finitely generated) free modules satisfy n-acc, for some positive integer n, or pan-acc. As noted earlier, Heinzer and Lantz [7] give examples, for each positive integer n, of a commutative ring R_{n} which satisfies n-acc but not $(n+1)$-acc, and hence not pan-acc.

Proposition 3.1. Let R be a subring of a ring S and let A be an ideal of R such that A is a left ideal of S and the ring R / A is right perfect. Suppose further that there exists a positive integer n such that every (finitely generated) free right S-module satisfies n-acc. Then every (finitely generated) free right R-module satisfies n-acc.

Proof. Let n be any positive integer. Let I be any nonempty index set and let $N_{1} \subseteq$ $N_{2} \subseteq N_{3} \subseteq \cdots$ be any ascending chain of n-generated submodules of the free right R-module $R_{R}^{(I)}$. In a natural way we can think of $R_{R}^{(I)}$ as an R-submodule of the right S-module $F=S_{S}^{(I)}$.

Clearly $N_{1} S \subseteq N_{2} S \subseteq N_{3} S \subseteq \cdots$ is an ascending chain of n-generated S-submodules of F. By hypothesis, there exists a positive integer t such that $N_{t} S=N_{t+1} S=$ $N_{t+2} S=\cdots$. Because A is a left ideal of S it follows that $N_{t} A=N_{t+1} A=N_{t+2} A=\cdots$.

Let $N=\bigcup_{i \geq 1} N_{i}$. Then $N A=N_{t} A$ and hence N / N_{t} is a right (R / A)-module. By the Jonah-Renault Theorem (see [8, Main Theorem; 11, Proposition 1.2]), N / N_{t} satisfies n-acc and hence there exists $s \geq t$ with $N_{s}=N_{s+1}=N_{s+2}=\cdots$.

Now suppose that in Proposition 3.1, A is a finitely generated right ideal, rather than a left ideal, of S and that A_{S} is generated by k elements. In this case, in the proof of Proposition 3.1, $N_{1} A \subseteq N_{2} A \subseteq N_{3} A \subseteq \cdots$ is an ascending chain of ($n k$)-generated S-submodules of F. If F satisfies $(n k)$-acc then there exists a positive integer t such that $N_{t} A=N_{t+1} A=N_{t+2} A=\cdots$. By the proof of Proposition 3.1, it follows that $R_{R}^{(I)}$ satisfies n-acc. We have thus proved the following companion to Proposition 3.1.

Proposition 3.2. Let R be a subring of a ring S and let A be an ideal of R such that A is a finitely generated right ideal of S and the ring R / A is right perfect. Suppose further that every (finitely generated) free right S-module satisfies pan-acc. Then every (finitely generated) free right R-module satisfies pan-acc.

Proposition 3.3. Let T be a subring of a ring S and let B and C be ideals of T such that the rings T / B and T / C are right perfect and C is a finitely generated right ideal of T. Let R_{1} and R_{2} denote the subrings $T+S B$ and $T+C S$ of S, respectively.
(i) If n is a positive integer such that every (finitely generated) free right S-module satisfies n-acc then so too does every (finitely generated) free right R_{1}-module.
(ii) If every (finitely generated) free right S-module satisfies pan-acc then so too does every (finitely generated) free right R_{2}-module.

Proof. (i) Note that $S B$ is a left ideal of S and a two-sided ideal of R_{1} such that $R_{1} / S B \cong T /(T \cap S B)$ which is right perfect, being a homomorphic image of T / B. Apply Proposition 3.1 to obtain that every free right R_{1}-module satisfies n-acc.
(ii) Similar to (i).

Proposition 3.4. Let S be any ring and let n be a positive integer such that every (finitely generated) free right S-module satisfies n-acc. Let T be a subring of S and let B be an ideal of T such that the ring T / B is right perfect. Let L be any left ideal of S such that $B+L B$ is a left ideal of S and let $R=T+L B$. Then every (finitely generated) free right R-module satisfies n-acc.

Proof. Let $A=B+L B$. Then A is a left ideal of S and a two-sided ideal of R such that $R / A=(T+L B) /(B+L B) \cong T /(B+(T \cap L B))$ which is right perfect, being a homomorphic image of T / B. Apply Proposition 3.1.

Corollary 3.5. Let S be any ring and let n be a positive integer such that every (finitely generated) free right S-module satisfies n-acc. Let T be a subring of S and let B be an ideal of T such that the ring T / B is right perfect. Let L be any left ideal of S such that $S=T+L$ and let $R=T+L B$. Then every (finitely generated) free right R-module satisfies n-acc.

Proof. Because $S=T+L, B+L B=S B$ is a left ideal of S. Apply Proposition 3.4.
The next result is a companion to Corollary 3.5 .

Proposition 3.6. Let S be any ring such that every (finitely generated) free right S-module satisfies pan-acc. Let T be a subring of S and let B be an ideal of T such that B is finitely generated as a right ideal and the ring T / B is right perfect. Let E be any right ideal of S such that $S=T+E$ and let $R=T+B E$. Then every (finitely generated) free right R-module satisfies pan-acc.

Proof. There exist a positive integer m and elements $b_{i} \in B$ such that $B=b_{1} T+\cdots+$ $b_{m} T$. Now $B+B E=B S=b_{1} S+\cdots+b_{m} S$. Now apply Proposition 3.2.

Let S be a ring and let A be a right ideal of S. Then we define $\mathscr{I}(A)=\{s \in S$: $s A \subseteq A\}$. Then $\mathscr{I}(A)$ is the biggest subring of S in which A is a two-sided ideal and $\mathscr{I}(A)$ is called the idealizer of A in S. If A is a left ideal we can construct the idealizer $\mathscr{I}(A)$ in a similar way.

Proposition 3.7. Let A be a left or right ideal of a ring S, let T be a right perfect subring of $\mathscr{F}(A)$ and let $R=T+A$.
(i) If A is a left ideal and n is a positive integer such that every (finitely generated) free right S-module satisfies n-acc then so too does every (finitely generated) free right R-module.
(ii) If A is a finitely generated right ideal and every (finitely generated) free right S-module satisfies pan-acc then so too does every (finitely generated) free right R-module.

Proof. (i) By Proposition 3.1 since $R / A \cong T /(T \cap A)$ which is right perfect.
(ii) Similar to (i).

Corollary 3.8. Let T be a right perfect subring of a ring S, let A be an ideal of S and let $R=T+A$. If n is a positive integer such that every (finitely generated) free right S-module satisfies n-acc then so too does every (finitely generated) free right R-module.

Proof. By Proposition 3.7, for in this case $S=\mathscr{I}(A)$.
We next mention an interesting special case of Proposition 3.7.
Proposition 3.9. Let A be a left or right ideal of a ring S such that the S-module S/A has finite composition length. Let $R=\mathscr{I}(A)$.
(i) If A is a left ideal and n is a positive integer such that every (finitely generated) free right S-module satisfies n-ace then so too does every (finitely generated) free right R-module.
(ii) If A is a finitely generated right ideal and every (finitely generated) free right S-module satisfies pan-acc then so too does every (finitely generated) free right R-module.

Proof. The ring R / A is isomorphic to the endomorphism ring of the S-module S / A and hence R / A is semiprimary, whence right perfect, by [1, 28.8 and 29.3]. Apply Propositions 3.1 and 3.2.

Now we introduce some matrix examples. First, we prove the following result.
Proposition 3.10. Let A and B be ideals of a ring R such that $A B=0$, the ring R / B is right perfect and every (finitely generated) free right (R / A)-module satisfies n-acc, for some fixed positive integer n. Then every (finitely generated) free right R-module satisfies n-acc.

Proof. Let F be a (finitely generated) free right R-module and let $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots$ be any ascending chain of n-generated submodules of F. Then $\left(N_{1}+F A\right) / F A \subseteq$ $\left(N_{2}+F A\right) / F A \subseteq\left(N_{3}+F A\right) / F A \subseteq \cdots$ is an ascending chain of n-generated submodules of the (finitely generated) free right (R / A)-module $F / F A$. By hypothesis, there exists a positive integer k such that $N_{k}+F A=N_{k+1}+F A=N_{k+2}+F A=\cdots$. Now $A B=0$ gives $N_{k} B=N_{k+1} B=N_{k+2} B=\cdots$. The argument of Proposition 3.1 now gives that $N_{t}=N_{t+1}=N_{t+2}=\cdots$ for some integer $t \geq k$. Thus F satisfies n-acc.

Let S and T be rings and let M be a left S-, right T-bimodule. Let [$S, M ; 0, T$] denote the set of "matrices"

$$
\left[\begin{array}{ll}
s & m \\
0 & t
\end{array}\right]
$$

where $s \in S, m \in M$ and $t \in T$. Denote the above matrix by $[s, m ; 0, t]$. Then $[S, M ; 0, T]$ is a ring with respect to the usual definitions of matrix addition and multiplication.

Corollary 3.11. Let S be a ring such that every (finitely generated) free right S-module satisfies n-acc, for some fixed positive integer n. Let T be a right perfect ring and let M be a left S-, right T-bimodule. Let $R=[S, M ; 0, T]$. Then every (finitely generated) free right R-module satisfies n-acc.

Proof. Let $A=[0, M ; 0, T]$ and $B=[S, M ; 0,0]$. Then A and B are ideals of $R, A B=0$, $R / A \cong S$ and $R / B \cong T$. Apply Proposition 3.10.

Corollary 3.11 has the following immediate consequence.
Corollary 3.12. Let K be a field and let S be a K-algebra such that every (finitely generated) free right S-module satisfies n-acc, for some fixed positive integer n. Let M be any left S-module and let $R=[S, M ; 0, K]$. Then every (finitely generated) free right R-module satisfies n-acc.

Corollary 3.13. Let K be a field and let S be a right and left Noetherian K-algebra. Let M be any left S-module and let $R=[S, M ; 0, K]$. Then every free right R-module satisfies pan-acc.

Proof. By Corollary 3.12 and [11, Corollaire 3.3].
Example 3.14. Let K be a field and let S be a simple right and left Noetherian K-algebra which is not Artinian, let U be any simple left S-module and let $R=$ [$S, U ; 0, K]$. Then
(i) R is a left Noetherian ring, every finitely generated free left R-module is Noetherian but not every free left R-module satisfies 1-acc.
(ii) Every free right R-module satisfies pan-acc.

Proof. (i) By [9, 1.1.7] and [11, Proposition 3.4].
(ii) By Corollary 3.13.

Now taking K, S as in Example 3.14 and U a simple right S-module, let R denote the ring $[K, U ; 0, S]$. Let $A=[0, U ; 0, S]$ and $B=[K, U ; 0,0]$. Then A and B are ideals of R and $A B=0$. Moreover. $R / A \cong K$, so that R / A is right perfect, $R / B \cong S$, so that every free right (R / B)-module satisfies pan-acc [11, Corollaire 3.3], but not every free right R-module satisfies 1-acc [11, Proposition 3.4]. Compare Proposition 3.10. Note also that in this case if $C=B A=[0, U ; 0,0] \neq 0$, then $C^{2}=0$ and $R / C \cong S \oplus K$, so that every free right (or left) (R / C)-module satisfies pan-acc.

Many more examples can be produced using Corollary 3.11. For example, let S be a commutative Noetherian domain with field of fractions L, let K be any extension field of L and let V be any vector space over K. Then the ring $R=[S, V ; 0, K]$ has the property that every free right R-module satisfies pan-acc (Corollary 3.11 and [11, Corollaire 2.3]). Note that R is right Noetherian if and only if R is right Goldie if and only if V is finite dimensional over K [9, 1.1.7].

Our next aim is to give an example of a commutative domain R such that every free R-module satisfies pan-acc but the polynomial ring $R[t]$ does not satisfy 2-acc. In contrast we have the following elementary fact.

Proposition 3.15. Let R be a domain which satisfies right 1 -acc. Then the polynomial ring $R[t]$ satisfies right 1 -acc.

Proof. Let S denote the ring $R[t]$. For any polynomial $f(t)$ in S, let $\delta(f(t))$ denote the degree of $f(t)$ and, if $f(t) \neq 0$, let $\lambda(f(t))$ denote the leading coefficient of $f(t)$.

Let $f_{1}(t) S \subseteq f_{2}(t) S \subseteq f_{3}(t) S \subseteq \cdots$ be any ascending chain of principal right ideals of S. Then $\delta\left(f_{1}(t)\right) \geq \delta\left(f_{2}(t)\right) \geq \delta\left(f_{3}(t)\right) \geq \cdots$, so that without loss of generality we can suppose that all the polynomials $f_{i}(t)$ are nonzero with the same degree.

Moreover, $\lambda\left(f_{1}(t)\right) R \subseteq \lambda\left(f_{2}(t)\right) R \subseteq \lambda\left(f_{3}(t)\right) R \subseteq \cdots$ so there exists a positive integer n with $\lambda\left(f_{n}(t)\right) R=\lambda\left(f_{n+1}(t)\right) R=\lambda\left(f_{n+2}(t)\right) R=\cdots$. It is now easy to check that $f_{n}(t) S=f_{n+1}(t) S=f_{n+2}(t) S=\cdots$. Thus S satisfies right 1-acc. \square

Example 3.16. Let K / L be a nonalgebraic field extension and let R denote the subring $L+x K[x]$ of the polynomial ring $K[x]$. Then R is a commutative domain such
that every free R-module satisfies pan-acc but the polynomial ring $R[t]$ does not satisfy $2-a c c$.

Proof. Let T denote the ring $R[t]$. Note first that every free R-module satisfies pan-acc by Corollary 3.8 (take $S=K[x], T=L$ and $A=x K[x]$). There exists an element a in K such that a is not algebraic over L. For each positive integer n,

$$
x^{2} a^{n}=\left(x^{2} a^{n+1}\right) t-(x a t-x) x a^{n} \in\left(x^{2} a^{n+1}, x a t-x\right) .
$$

Consider the chain of 2 -generated ideals of T :

$$
\begin{equation*}
\left(x^{2} a, x a t-x\right) \subseteq\left(x^{2} a^{2}, x a t-x\right) \subseteq\left(x^{2} a^{3}, x a t-x\right) \subseteq \cdots . \tag{1}
\end{equation*}
$$

Now suppose that $x^{2} a^{n+1} \in\left(x^{2} a^{n}\right.$, xat $\left.-x\right)$, for some positive integer n. There exist u, v in T such that

$$
x^{2} a^{n+1}=x^{2} a^{n} u+(x a t-x) v
$$

Setting $t=1 / a$, we have

$$
x^{2} a^{n+1}=x^{2} a^{n}\left(d_{0}+d_{1}(1 / a)+d_{2}(1 / a)^{2}+\cdots+d_{m}(1 / a)^{m}\right)
$$

for some $m \geq 1, d_{i} \in R(0 \leq i \leq m)$. Hence

$$
a^{m+1}=d_{0} a^{m}+d_{1} a^{m-1}+\cdots+d_{m}
$$

For each $0 \leq i \leq m$, there exist $c_{i} \in L, f_{i}(x) \in K[x]$ such that $d_{i}=c_{i}+x f_{i}(x)$. It follows that $a^{m+1}=c_{0} a^{m}+c_{1} a^{m-1}+\cdots+c_{m}$, a contradiction. Thus every inclusion in the chain (1) is proper and hence the ring T does not satisfy 2-acc.

Note that in Example 3.16 the ring $R[t]$ is isomorphic to the subring $L[t]+x K[x, t]$ of the polynomial ring $S=K[x, t]$. The ring S is a commutative Noetherian domain and every free S-module satisfies pan-acc. [11, Corollaire 2.3]. Moreover, the ring $R[t]$ has as a subring the ring $S^{\prime}=L+x K[x, t]$. By Corollary 3.8 every free S^{\prime}-module satisfies pan-acc. This indicates how vital it is to have a right perfect subring involved in the constructions in this section.

4. Torsionless modules

Let R be a ring and let M be a right R-module. The module M is called torsionless provided for each $0 \neq m \in M$ there exists $f \in \operatorname{Hom}_{R}(M, R)$ such that $f(m) \neq 0$ (see, for example, $[9,3.4 .2]$). It is easy to see that this is equivalent to saying that M embeds in a direct product of copies of R_{R}. Note that if U is any left R-module then the right R-module $\operatorname{Hom}_{R}(U, R)$ is torsionless (see [9, 3.4.2]).

Let R be a right Noetherian right nonsingular ring. Then every torsionless right R-module satisfies pan-acc (see [3, Theorem 1.5] or [11, Corollaire 2.3]). In this section
we shall give some examples of rings which need not be right Noetherian but for which every torsionless right module satisfies pan-acc.

Proposition 4.1. Let R be a subring of a ring S and let A be an ideal of R such that A is a left ideal of S and the ring R / A is right perfect. Suppose further that there exists a positive integer n such that every torsionless right S-module satisfies n-acc. Then every torsionless right R-module satisfies n-acc.

Proof. By the proof of Proposition 3.1 with the direct product $\left(R_{R}\right)^{I}$ replacing the direct sum $\left(R_{R}\right)^{(I)}$.

In a similar way, the proof of Proposition 3.2 can be adapted to give:
Proposition 4.2. Let R be a subring of a ring S and let A be an ideal of R such that A is a finitely generated right ideal of S and the ring R / A is right perfect. Suppose further that every torsionless right S-module satisfies pan-acc. Then every torsionless right R-module satisfies pan-acc.

Corollary 4.3. Let R be a subring of a right Noetherian right nonsingular ring S and let A be an ideal of R such that A is a left or right ideal of S and the ring R / A is right perfect. Then every torsionless right R-module satisfies pan-acc.

Proof. By Propositions 4.1 and 4.2 and [11, Corollaire 2.3].
Another consequence of Propositions 4.1 and 4.2 is the following result.
Corollary 4.4. Let T be a right Noetherian right nonsingular ring and let B be any ideal of T such that the ring T / B is right Artinian. Let R denote the subring $T+x B[x]$ of the polynomial ring $T[x]$. Then every torsionless right R-module satisfies pan-acc.

Proof. If E is an essential right ideal of the polynomial ring $S=T[x]$ then the set E^{\prime} of leading coefficients of the elements of E, together with 0 , forms an essential right ideal of T. It follows that the ring S is right Noetherian right nonsingular. Let L denote the ideal $x S$ of S. Note that $S=T+L$. Let $A=B+x B[x]=S B$. Then $A \subseteq R$ and A is an ideal of S. Moreover, the ring R / A is a homomorphic image of T / B, so is right Artinian. By Corollary 4.4, every torsionless right R-module satisfies pan-acc.

It is now clear that the results of Section 3 can be adapted to give corresponding results for torsionless modules. We now prove an analogue of Proposition 3.10.

Proposition 4.5. Let A and B be ideals of a ring R such that $A B=0$, the ring R / B is right perfect and every torsionless right (R / A)-module satisfies n-acc, for some fixed positive integer n. Then every torsionless right R-module satisfies n-acc.

Proof. Let $F=\left(R_{R}\right)^{I}$, for any nonempty index set I. Let $R^{\prime}=R / A$ and $A^{*}=A^{I}$. Then $F / A^{*} \cong\left(R_{R^{\prime}}^{\prime}\right)^{I}$, which is a torsionless right R^{\prime}-module. Now the result follows by the proof of Proposition 3.10 because $A^{*} B=0$.

Corollary 4.6. Let K be a field and let S be a right Noetherian right nonsingular K-algebra. Let M be any left S-module and let $R=[S, M ; 0, K]$. Then every torsionless right R-module satisfies pan-acc.

Proof. This result follows from Proposition 4.5 in essentially the same way that Corollary 3.12 follows from Proposition 3.10, by using [11, Corollaire 2.3].

Acknowledgements

This work was carried out during the visits of the first author to the University of Glasgow in December 1994 and February 1995, and she would like to thank the Department of Mathematics of the University of Glasgow for hospitality and the JNICT (Portugal) for financial support.

References

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer, New York, 1974).
[2] M.E. Antunes Simões and A.-M. Nicolas, Exemples d’anneaux n-ace, Comm. Algebra 12 (1984) 1653-1665.
[3] M.E. Antunes Simões and P.F. Smith, Direct products satisfying the ascending chain condition for submodules with a bounded number of generators, Comm. Algebra 23 (1995) 3525-3540.
[4] M.E. Antunes Simooes and P.F. Smith, On the ascending chain condition for submodules with a bounded number of generators, Comm. Algebra 24 (1996) 1713-1721.
[5] F. Bonang, Noetherian rings whose subidealizer subrings have pan-a.c.c., Comm. Algebra 17 (1989) 1137-1146.
[6] P.M. Cohn, Free Rings and Their Relations (Academic Press, New York, 1971).
[7] W. Heinzer and D. Lantz, Commutative rings with ACC on n-générated ideals, J. Algebra 80 (1983) 261-278.
[8] D. Jonah, Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals, Math. Z. 113 (1970) 106-112.
[9] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings (Wiley-Interscience, Chichester, 1987).
[10] A.-M. Nicolas, Sur les modules tels que toute suite croissante de sous-modules engendres par n générateurs soit stationnaire, J. Algebra 60 (1979) 249-260.
[11] G. Renault, Sur les conditions de chaînes ascendantes dans des modules libres, J. Algebra 47 (1977) 268-275.

[^0]: * Corresponding author.

