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Abstract 

Let R be a ring such that every finitely generated free (respectively, every free) right R-module 
satisfies the ascending chain condition on n-generated submodules for every positive integer n; 
then any ring Morita equivalent to R has the same property. This is in contrast to tings R 
which satisfy the ascending chain condition on n-generated right ideals, for some fixed positive 
integer n, for in this case tings Morita equivalent to R need not have the same property. If R 
is a right and left Ore domain and n is a positive integer such that the free right R-module 
R(R n) satisfies the ascending chain condition on n-generated submodules then so too does every 
free right R-module. Many examples are given of rings for which every finitely generated free 
(respectively, every free) right module satisfies the ascending chain condition on n-generated 
submodules, for some positive integer n. @ 1998 Elsevier Science B.V. 

A M S  Classification." 16P70, 16D90, 16U20, 16D40, 16P20 

1. Morita  equivalence 

Throughout this note, all rings are associative with identity and all modules are unital 

right modules. Let n be a positive integer. We say that a module M satisfies n-acc if  

every ascending chain of n-generated submodules terminates. If  the module M satisfies 

n-acc for every positive integer n, then we shall say that M satisfies pan-acc. We 

shall say that the ring R satisfies right n-acc (respectively, right pan-acc)  i f  the right 
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R-module R satisfies n-acc (pan-acc). For information about any terms used without 
explanation, see [1] or [9]. 

Let R be any ring and let m,n be positive integers• Let ~ / , (R)  denote the ring o f  

all n × n matrices with entries in R and let ~/m×n(R) denote the additive Abelian 
group of  all m × n matrices with entries in R. Let S denote the ring Jgn(R). Clearly 

Jgm×~(R) is a fight S-module with respect to matrix multiplication• Given elements 

aij E R (1 < i < m, 1 < j < n), let (aij) denote the m × n matrix 

all " '" 

aml • " " 

in ,/~m×n(R ). 
Let F denote 

R-submodules of  

and 

a'° 1 
amn J 

the free fight R-module R~ m). Let N and L be any n-generated 

F.  There exist aij, bij E R (1 < i < m, 1 < j  < n) such that 

N = (all . . . . .  aml)R + " "  + (aln . . . . .  amn)R, 

L = (bll . . . . .  bml)R + " "  + (bl . . . . . .  bmn)R. 

Lemma 1.1. With the above notation, N C L i f  and only i f  there exists (cij) in S such 

that (aij) = (bij)(cij). 

Proof. N C L if and only if there exist elements cij E R (1 < i, j _< n) such that 

( a U . . . . .  amj ) = (bll . . . . .  bml )elj + " "  + (bl . . . . . .  bmn )Cnj, 

for each 1 < j _< n, and this holds if and only if 

LI a ' al ]amm amn Lrbll bnl[Cv l on1 
• " " C l n  I 

• " " C n n  J 

[] 

With N as above, we define :~(N) = (aij)S, i.e. c~(N) is the set of  m × n matrices 

over R such that the transpose o f  each column is in N. Note that by Lemma 1.1, 7(N) 

is independent of  the choice of  n-generating set for N. Moreover, Lemma 1.1 gives at 

once: 

Corollary 1.2. With the above notation, let N C_ L be n-generated R-submodules o f F .  

Then ~(N)  C_ ~(L). 

Now suppose that a = (aij) E ~mxn(R) ,  where aij C R (1 < i < m, 1 ~ j < n). 

We define 

i~(aS) = (all . . . . .  aml)R + " "  + (aln . . . . .  amn)R. 
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Note that Lemma 1.1 shows that if a, b E Jlmxn(R) with aS = bS then fl(aS) = fl(bS). 
Thus, for each a in J/[mxn(R), fl(aS) is a well-defined n-generated R-submodule of  F. 
Moreover, Lemma 1.1 gives at once: 

Corollary 1.3. Let a, b 6 ,/~mxn(R) with aS C bS. Then fl(aS) c_ fl(bS). 

Lemma 1.4. With the above notation, fl~(N) = N for every n-generated R-submodule 
N o f F  and :~fl(aS) = aS for every a C J/[mxn(R). 

ProoL Clear. 

Theorem 1.5. Let R be any ring and let m and n be positive integers. Then the free 
right R-module R(R m) satisfies n-acc i f  and only i f  the right Jg~(R)-module ~ m x n ( R )  
satisfies 1-acc. 

Proof. Clear by the above results. [] 

Corollary 1.6. Let R be any ring and let n be any positive integer. Then the ring 
..#n(R) satisfies right 1-acc i f  and only i f  the free right R-module R (n) satisfies 
H-OCC. 

Proof. Take m = n in the theorem. [] 

Corollary 1.7. Let R be any ring and let n be any positive integer such that the ring 
J/gn(R) satisfies right 1-acc. Then R satisfies right n-acc. 

Proof. By Corollary 1.6. [] 

Heinzer and Lantz [7, Section 4] show that for every positive integer n there exists 
a commutative ring Rn such that Rn satisfies n-acc but Rn does not satisfy (n + 1)- 
acc. Thus J//n+l(Rn) does not satisfy 1-acc (Corollary 1.7). This shows that for any 
positive integer n, matrix rings over rings which satisfy right n-acc need not them- 
selves satisfy right n-acc, and in particular "satisfying right n-acc" is not a Morita 
invariant. 

Let R he any ring and let S = J/gn(R), for any positive integer n. For each 1 _< i, 
j _< n, let eij denote the matrix in S with (i,j)th entry 1 and all other entries 0. Let 
F be a free right S-module with basis {f~: 2 E A). Then F is a free right R-module 
with basis {f;.eij: ). 6 A, 1 <_ i , j  ~_ n}, and i f N  is any m-generated S-submodule of  
F, say N = xlS + . . .  ÷ xmS then N is an mnZ-generated R-submodule of F, because 
N = ~ i  ~ j  ~ xkeijR. This gives the following result. 

Lemma 1.8. Let R be any ring such that every (finitely generated) free right 
R-module satisfies pan-acc. Let n be any positive integer. Then every (finitely gene- 
rated) free right Jl,(R)-module satisfies pan-acc. 
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Theorem 1.9. The Jbllowing statements are equivalent for a ring R: 
(i) For each positive integer n, the ring o£n(R) satisfies right pan-acc. 

(ii) For each positive integer n, the ring J[n(R) satisfies right 1-acc. 
(iii) Every finitely generated free right R-module satisfies pan-acc. 
(iv) For each positive integer n, every finitely generated free right ~#~(R)-module 

satisfies pan-acc. 

Proof.  (i) ~ (ii): Clear. 
(ii) =~ (iii): Let m be any positive integer and let F = R~ n). Let n be any positive 

integer. By hypothesis, the ring J/[m+n(R) satisfies right 1-acc. By Corollary 1.6, ~(m+,) x "  R 

satisfies (m 4-n)-acc. Hence F satisfies n-acc. It follows that F satisfies pan-acc. This 
proves (iii). 

(iii) ~ (iv): By Lemma 1.8. 
(iv) =~ (i): Clear. [] 

Renault [11] gives an example of  a right Noetherian ring R with the property that if 
F is the free right R-module of  countably infinite rank then F does not satisfy 1-acc. 
Thus every finitely generated free fight R-module is Noetherian and hence satisfies pan- 
acc but not every free fight R-module satisfies pan-acc. If we assume in Theorem 1.9 
that the ring R has additional properties then we can say more. 

Corollary 1.10. Let R be a right Goldie ring which satisfies dcc on right annihilators. 
Then the following statements are equivalent: 

(i) For each positive integer n, the ring J~n(R) satisfies right pan-acc. 
(ii) For each positive integer n, the ring .~#n(R) satisfies right 1-acc. 

(iii) Every free right R-module satisfies pan-acc. 
(iv) For each positive integer n, every free right ~4[n(R)-module satisfies 

pan-acc. 

Proof.  By Theorem 1.9 and [4, Theorem 1]. 

In particular, Corollary 1.10 holds for any right nonsingular fight Goldie ring (see [4] 
or [3, Theorem 1.5]). 

Lemma 1.11. Let T be a ring, let e be an idempotent in T and let R be the subring 
eTe o f  T. Let n be any positive integer. 

(i) I f  T satisfies right n-acc then so too does R. 
(ii) I f  every (finitely generated)free right T-module satisfies n-acc then so too 

does every (finitely generated)free right R-module. 

Proof.  (i) See [5, Proposition 4.6]. 
(ii) Let F be any free right R-module. Without loss of  generality we can take 

F = R~ A), for some index set A. We can think of  F as an R-submodule of  the free 
right T-module G =- T(r n), in a natural way. Let N be any n-generated R-submodule 
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o f F ,  s a y N = x l R + . . . + x ~ R .  Then 

N T  = x l R T  + . . .  + xnRT = x l T  + . . .  + xnT C_NT, 

so that N T  is an n-generated T-submodule of G. 

Let NI C_ N2 C_ N3 C . . .  be any ascending chain of n-generated R-submodules of  F. 
Then, by the above remarks, N 1 T C N 2 T C N 3 T C _ . . .  is an ascending chain of 

n-generated T-submodules of G. By hypothesis, there exists a positive integer k such 
that NkT  = N k - I T  = Nk+2 T . . . .  . Let i _> k. Then Nk = NkR = Nk(eTe)  = 

NkTe = NiTe = Ni. That is, Nk = Nk~-i = Nk+2 . . . .  . It follows that F satisfies 
n-acc. 

Theorem 1.12. Let  R be a ring such that every ( f ini te ly  generated) f ree  right 

R-module satisfies pan-ace. Le t  T be a ring Mori ta  equivalent to R. Then every 

( f in i te ly  genera ted ) f ree  right T-module satisfies pan-acc. 

Proof. By Lemmas 1.8 and 1.11. [] 

Let R be a ring which satisfies right pan-acc and let T be a ring Morita equivalent 
to R. Does T satisfy fight pan-acc? By Theorem 1.12, this is certainly the case if every 
finitely generated free fight R-module satisfies pan-ace. Heinzer and Lantz conjecture 
that if a ring R satisfies right pan-acc then every finitely generated free right R-module 
satisfies pan-acc, but this is still open according to Bonang [5] (see also [6, Ex. 0.1]). 
We shall return to this question in the next section. 

2. Domains with n - a c e  

The purpose of this section is to give a proof of the main result of this paper, 
namely: 

Theorem 2.1. Let  R be a left and right Ore domain and let n be a positive integer 

such that the f ree  right R-module R(R n) satisfies n-acc. Then every f r ee  right R-module 

satisfies n-acc. 

Combining this theorem with our remarks at the end of the previous section we see 
that if R is a left and right Ore domain such that for every positive integer n, the free 
fight R-module R~ n) satisfies n-acc then every ring Morita equivalent to R satisfies fight 
pan-acc. 

In order to prove Theorem 2.1 we first prove a number of lemmas. 

Lemma 2.2. Let  D be a division ring and let a ~ J{m×n(D) where m and n are 

positive integers and m > n. Then there exists  a unit p in d/Ira(D) such that the last 

(m - n) rows o f  pa are all zero. 
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Proof .  The result is trivial if  a = 0. Suppose that a ~ 0. Suppose that n = 1. Then  

I a l l  

a ~ 

aml 

Now ail ~ 0 for some 1 < i < m. I f  i = 1 let P l  = at-lie11 + ~ k # l  e a ;  otherwise let 

-- Z k # i ,  1 ekk E J/[m(D). Pl  = e l l  q- ail l eli q - 

Then Pl  is a unit  in ,/I/In(D) and p l a  has first entry 1. Thus without loss o f  general i ty 

a l l  = 1. Now let 

0 0 0 . . .  

1 0 0 . . .  

0 1 0 . . .  0 

--aml 0 0 0 ""  1 

Then p is a uni t  in J i m ( D )  with inverse 

1 

--a21 

--a31 
p =  

p - t =  

Moreover,  

o o o . . .  o1 

a21 1 0 0 . . .  0 

a31 0 1 0 . . .  0 

am1 0 0 0 . . .  1 

- 

0 

E J4m(D).  

;1 

pa  = 

This proves the result when  n = 1. 
Now suppose that n _> 2. Let al  be  the m x (n - 1) matr ix  over D and let b be  the 

m x 1 matrix over D such that a = [al Ib] ( in the obvious  notat ion) .  By induct ion there 

exists a uni t  ql in J/ /m(D) such that qlal  has last m - (n - 1) rows zero. It fol lows 

that 
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where c, d, e, f are, respectively, an (n - 1) x (n - l )  matrix, an (n - 1)x  matrix, 

the zero (m - (n - 1)) x (n - 1) matrix and an (m - (n - 1)) x 1 matrix over D. 

I f  f = 0 then the result is proved. I f  f ¢ 0 then we can argue as in the case n = 1 

to produce a unit q2 in ~¢{m(D) such that 

q q'a=ICe 
where 9 is the (m 

Thus, i f  p = q2ql 
zero, as required. 

- (n - 1)) x 1 matrix with first entry 1 and all other entries zero. 

then p is a unit in JCdm(D) and the last ( r n -  n) rows of  pa are 
[] 

The proof  of  the next result is quite elementary. Recall that i f  R is a left Ore domain 

with left quotient division ring D then any element in D can be written in the form 

c - l r  where r c R, 0 ¢ c E R. It is well known that i f  n is a positive integer and 

qi E D (1 < i < n) then there exist ri E R (1 _< i _< n), 0 ~ d E R such that 

qi = d - l r i  (1 < i < n). This gives the following result. 

L e m m a  2.3. Let  R be a left Ore domain with left quotient division ring D and let m 
be a positive integer. Let  p be any unit in JI[,,(D). Then there exists a nonzero 

element e in R such that cp C Jgm(R). 

In the next result we return to the situation considered in Section 1. Let R be any 

ring and let m and n be positive integers. Let S denote the ring J//~(R) and let e be 

the mapping from the collection of  n-generated submodules o f  the free right R-module 

F = R i  m) to the collection of  cyclic S-submodules of  ~ ' ,~xn(R),  as defined in Section 1. 

L e m m a  2.4. With the above notation, let N C_ L be n-generated R-submodules o f  F 

such that N is an essential submodule o f  L. Then ~(N)  is an essential S-submodule 

o f  2(L). 

P r o o f .  Let L = ( b l l  . . . . .  bml)R+"" +(bin . . . .  , bran)R, and let (bij)  be the corresponding 

matrix in =¢/~xn(R). Let s = (cij) E S, where cij c R (1 _< i , j  < n), such that (bij)s 
¢ 0. There exists 1 < k < n such that the kth column of  (biy)S is not zero. Thus 

0 7 ~ x = (bl l  . . . . .  bml)Clk + " .  + (bin . . . .  ,bmn)Cnk E L. 

There exists r E R such that 0 ¢ xr E N.  Let t = rekk E S. Then 0 ¢ (bij)st C cffN). 

It follows that e (N)  is essential in e(L). [] 

We shall require the following special case o f  Lemma 2.4. 

C o r o l l a r y  2.5. With the above notation, let R be a semiprime rioht Goldie rin 9. Le t  

N E L  be n-generated R-submodules o f F  such that N is an essential submodule o f  L. 

Let  a be any nonzero element o f  ~t(L). Then there exists a reoular element c in R such 
that ac* E ~(N),  where c* is the diagonal matr ix  in S with all diagonal entries c. 
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Proof.  Let a C (bij)S (in the above notation). Let ak (1 < k < n) denote the columns 
of  a. The proof of  Lemma 2.4 shows that for each 1 < k < n there exists an essential 
right ideal Ek of  R with 

[0 .. .  0 ak 0 .. .  0](Ekekk)_Ccc(N). 

Let E = El n -. • A E,.  Then E is an essential right ideal of  R and hence E contains a 
regular element c o f  R [9, 2.3.4 and 2.3.5]. Now 

ac* = [a! ... an]c* E c~(N). [] 

Proof  of  Theorem 2.1. Let R be a left and fight Ore domain with quotient division 

ring D. Let n be a positive integer such that the free right R-module R(R ") satisfies 
n-acc. To prove that every free right R-module satisfies n-ace it is sufficient to prove 
that every finitely generated free right R-module satisfies n-acc (see, for example, 

[3, Theorem 1.5]). 

Let m be any positive integer. Let F = R ~  ~. If  m _< n then F satisfies n-ace. 

Suppose that m > n + 1. Let N1 C__ N2 C_ N3 C .  • • be any ascending chain o f  n-generated 

submodules o f  F.  By [3, Lemma 1.1], for each i _> 1, Ni has uniform dimension at 

most n. Thus, without loss of  generality we can suppose that N1 is essential in Ni for 

all i >_ 1. 
By Corollary 1.2, ~(NI) C_ c~(N2) C c~(N3) C_... is an ascending chain o f  cyclic S-sub- 

modules of  Jgmxn(R), where S = ~#~(R). For each i > 1, let ai E J/[mxn(R) such that 
c~(Ni) = aiS. By Lemmas 2.2 and 2.3 there exist a unit p in JC/,~(D) and a nonzero 

element c in R such that cp E J/[rn(R) and cpa 1 
By Corollary 2.5, for each i >_ 1, there exists a 

cpaid* E cpalS. Thus the last ( m -  n) rows of  

( m -  n) rows of  cpa i are zero. 

has its last ( m -  n) rows all zero. 

nonzero element di in R such that 
cpaid* are zero and hence the last 

Consider the ascending chain cpalS C cpa2S C_ cpa3S C_... in ~[mxn(R). By 
Corollary 1.3 ~(cpalS)  C ~(cpa2S ) C ~(cpa3S ) C . . .  is an ascending chain of  n-gene- 

rated submodules of  F.  Moreover, for each i >_ 1, ~(cpaiS) is contained in the 

submodule G o f F  consisting of  all elements o f F  of  the form (rl . . . . .  rn,0 . . . . .  0), where 

ri E R (1 < i < n). But G ~ R(R ") and hence, by hypothesis, G satisfies n-ace. Thus 

there exists a positive integer k such that [J(cpakS ) = ~(cpak+lS) = ~(cpak+2S) . . . .  

By Lemma 1.4, if we now apply c~ we have cpakS = cpak+lS = cpak+2S . . . .  Now 
using the fact that c ¢; 0 and p is a unit, we have akS = ak.-iS = ak+2S . . . .  Finally 
applying /3 we obtain Nk = Nk+l = Nk+2 . . . .  It follows that F satisfies n-acc. [] 

If  in Theorem 2.1 the ring R is commutative we can do rather better, as the next 

result shows. I f  a c J// ,(R),  for any commutative ring R and positive integer n, then 

det(a) will denote the determinant of  a. 

Theorem 2.6. Let  R be a commutative domain and let n be a positive integer such 

that the f ree  R-module R(R n- l ~ satisfies n-ace. Then every f ree  R-module satisfies n-ace. 
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Proof. In view of  Theorem 2.1 it is sufficient to prove that the free R-module F = R~ n) 

satisfies n-acc. Let S -- =J/',(R) and let D denote the field of  fractions of  R. By 
Corollary 1.6, it is sufficient to prove that S satisfies right 1-acc. Let alS  C_a2S C_ 

a 3 S  C . .  • be any ascending chain o f  nonzero principal right ideals of  S. By the proof  o f  
Theorem 2.1, we can suppose without loss of  generality that al has rank n, for otherwise 

there exists a unit p in o///,(D) and a nonzero element c in R such that cpa i has zero 

last row for all i > 1. Now d e t ( a l ) R C _ d e t ( a 2 ) R C d e t ( a 3 ) R C . . . ,  so there exists a 
positive integer k such that det(ak)R = det(ak+l )R = det(ak÷2)R . . . .  

Note that for all i > k, ak ---- aibi  for s o m e  bi E ~P/n(R) and det(ak)R -- det(ai)R. 

Since det(ak) ---- det(ai)det(bi) # 0, it follows that det(bi) is a unit in R and hence bi 

is a unit in S = Jg , (R) .  Thus akS = ak+lS = ak+2S . . . .  . It follows that F satisfies 
n-acc, as required. [] 

Nicolas [10, Proposition 1.4] proved that if R is a commutative domain which sat- 
isfies 1-acc then every free R-module satisfies l-acc. Now Theorem 2.6 gives at once: 

Corollary 2.7. Let  R be a commutative domain which satisfies 2-acc. Then every f ree  

R-module satisfies 2-acc. 

3. Rings whose free modules have pan-acc 

In this section, our concem is to give, in the spirit o f  [2, 5], a range of  examples of  
rings whose (finitely generated) free modules satisfy n-acc, for some positive integer n, 

or pan-acc. As noted earlier, Heinzer and Lantz [7] give examples, for each positive 
integer n, of  a commutative ring Rn which satisfies n-acc but not (n + 1)-acc, and 

hence not pan-acc. 

Proposition 3.1. Let  R be a subring o f  a ring S and let A be an ideal o f  R such that 

A is a left ideal o f  S and the ring R/A is right perfect. Suppose further that there 

exists a positive integer n such that every (finitely generated) f ree  right 

S-module satisfies n-acc. Then every (finitely generated) free  right R-module satisfies 

n-acc. 

Proof. Let n be any positive integer. Let I be any nonempty index set and let N1 C 

N2 C_N3 C_... be any ascending chain of  n-generated submodules o f  the free right 

R-module R~ ). In a natural way we can think of  R~ ) as an R-submodule of  the right 

S-module F = Ss ~). 
Clearly N1S C N2S C_N3S C_... is an ascending chain o f  n-generated S-submodules 

of  F.  By hypothesis, there exists a positive integer t such that NtS = Nt+IS = 

Nt+:S . . . .  . Because A is a left ideal o f  S it follows that NtA = Nt+1A = Nt+2A . . . .  

Let N = Ui>_l Ni. Then NA = NtA and hence N/Nt is a right (R/A)-module. By the 
Jonah-Renault Theorem (see [8, Main Theorem; 11, Proposition 1.2]), N/Nt satisfies 

n-acc and hence there exists s > t with Ns = Ns+~ = Ns+2 . . . .  . [] 
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Now suppose that in Proposition 3.1, A is a finitely generated right ideal, rather than 
a left ideal, of S and that As is generated by k elements. In this case, in the proof 
of Proposition 3.1, N1ACNzAC_N3AC_... is an ascending chain of (nk)-generated 
S-submodules of F. If F satisfies (nk)-acc then there exists a positive integer t such 
that NtA = Nt+lA = Nt+2A . . . .  . By the proof of Proposition 3.1, it follows that R~ ) 
satisfies n-acc. We have thus proved the following companion to Proposition 3.1. 

Proposition 3.2. Let R be a subring o f  a ring S and let A be an ideal of  R such that 
A is a finitely generated right ideal of  S and the ring R/A is right perfect. Suppose 

further that every (finitely generated) free right S-module satisfies pan-acc. Then 
every (finitely generated) free right R-module satisfies pan-acc. 

Proposition 3.3. Let T be a subring of  a ring S and let B and C be ideals of  T such 
that the rings T/B and T/C are right perfect and C is a finitely generated right ideal 
o f  T. Let R1 and R2 denote the subrings T + SB and T + CS of  S, respectively. 

(i) I f  n is a positive integer such that every (finitely generated)free right S-module 
satisfies n-acc then so too does every (finitely generated)free right Rl-module. 

(ii) I f  every (finitely generated) free right S-module satisfies pan-aec then so too 

does every (finitely generated)free right R2-module. 

Proof. (i) Note that SB is a left ideal of S and a two-sided ideal of R1 such that 
R1/SB -~ T / (TNSB)  which is fight perfect, being a homomorphic image of T/B. Apply 
Proposition 3.1 to obtain that every free fight Rl-module satisfies n-acc. 

(ii) Similar to (i). [] 

Proposition 3.4. Let S be any ring and let n be a positive integer such that every 

(finitely generated)free right S-module satisfies n-acc. Let T be a subring of  S and 
let B be an ideal of  T such that the ring T/B is right perfect. Let L be any left ideal 
o f  S such that B + LB is a left ideal of  S and let R = T + LB. Then every (finitely 

generated) free right R-module satisfies n-acc. 

Proof. Let A = B ÷ LB. Then A is a left ideal of S and a two-sided ideal of R such 
that R/A = (T + LB)/(B + LB) ~ T/(B + (T A LB)) which is right perfect, being a 
homomorphic image of T/B. Apply Proposition 3.1. 

Corollary 3.5. Let S be any ring and let n be a positive integer such that every 

(finitely generated)free right S-module satisfies n-acc. Let T be a subring of  S and 
let B be an ideal of  T such that the ring T/B is right perfect. Let L be any left ideal 
of  S such that S = T + L and let R = T + LB. Then every (finitely generated) free 

right R-module satisfies n-acc. 

ProoL Because S = T ÷ L, B + LB = SB is a left ideal of S. Apply Proposition 3.4. 
[] 

The next result is a companion to Corollary 3.5. 
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Proposition 3.6. Let S be any ring such that every (finitely generated) free right 
S-module satisfies pan-acc. Let T be a subring of  S and let B be an ideal of  T such 
that B is finitely generated as a right ideal and the ring T/B is right perfect. Let E 
be any right ideal of  S such that S = T + E and let R = T + BE. Then every (finitely 
generated) free right R-module satisfies pan-acc. 

Proofi There exist a positive integer m and elements bi c B such that B = bl T + .  • • ÷ 

braT. Now B + BE = BS = blS + .. • + bmS. Now apply Proposition 3.2. [] 

Let S be a ring and let A be a right ideal o f  S. Then we define J ( A )  = {s E S: 

sA CA}.  Then J ( A )  is the biggest subring of  S in which A is a two-sided ideal and 

J ( A )  is called the idealizer o f  A in S. I f A  is a left ideal we can construct the idealizer 
J ( A )  in a similar way. 

Proposition 3.7. Let A be a left or right ideal of  a ring & let T be a right perfect 
subring of  .,¢(A) and let R = T + A. 

(i) l f  A is a left ideal and n is a positive integer such that every (finitely generated) 

free right S-module satisfies n-acc then so too does every (finitely generated)free 
right R-module. 

(ii) I f  A is a finitely generated right ideal and every (finitely generated) free 
right S-module satisfies pan-acc then so too does ever), (.finitely generated)free right 
R-module. 

Proof. (i) By Proposition 3.1 since R/A ~ T/(T h A )  which is right perfect. 

(ii) Similar to (i). [] 

Corollary 3.8. Let T be a right perfect subring o f  a ring S, let A be an ideal o f  S 
and let R = T + A. I f  n is a positive integer such that ever), (finitely generated) free 
right S-module satisfies n-acc then so too does every (finitely generated)free right 
R-module. 

Proof.  By Proposition 3.7, for in this case S = J ( A ) .  [] 

We next mention an interesting special case of  Proposition 3.7. 

Proposition 3.9. Let A be a left or right ideal of  a ring S such that the S-module 

S/A has finite composition length. Let R = 5C(A). 
(i) IrA is a left ideal and n is a positive integer such that every (finitely generated) 

free right S-module satisfies n-acc then so too does ever), (finitely generated)free 
right R-module. 

(ii) I f  A is a finitely generated right ideal and every (finitely generated)free 
right S-module satisfies pan-acc then so too does every (finitely generated) free right 

R-module. 
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Proof. The ring R/A is isomorphic to the endomorphism ring of the S-module S/A 
and hence R/A is semiprimary, whence right perfect, by [1, 28.8 and 29.3]. Apply 
Propositions 3.1 and 3.2. E5 

Now we introduce some matrix examples. First, we prove the following result. 

Proposition 3.10. Let A and B be ideals of  a ring R such that AB = 0, the ring RIB 
is right perfect and every (finitely generated) free right (R/A)-module satisfies n-acc, 
for some fixed positive integer n. Then every (finitely generated)free right R-module 
satisfies n-acc. 

Proof. Let F be a (finitely generated) free right R-module and let Nl C_ N2 C_ N3 C_... 
be any ascending chain of  n-generated submodules of F. Then (Ni + FA)/FA C 

(N2 + FA)/FA C(N3 + FA)/FA C_... is an ascending chain of n-generated submodules 
of  the (finitely generated) free right (R/A)-module F/FA. By hypothesis, there exists 
a positive integer k such that Nk + FA = Nk+l + FA = Nk+2 + FA . . . .  . Now AB = 0 
gives NkB = Nk+lB = Nk+2B . . . .  . The argument of Proposition 3.1 now gives that 
Nt = Nt+l = Nt+2 . . . .  for some integer t > k. Thus F satisfies n-ace. 

Let S and T be rings and let M be a left S-, right T-bimodule. Let [S,M;0, T] 
denote the set of "matrices" [: ml 
where s E S, m E M and t E T. Denote the above matrix by [s,m;O,t]. Then [S,M;0, T] 
is a ring with respect to the usual definitions of  matrix addition and multiplication. 

Corollary 3.11. Let S be a ring such that every (finitely generated) free right 
S-module satisfies n-acc, for some fixed positive integer n. Let T be a right per- 
fect ring and let M be a left S-, right T-bimodule. Let R = [S,M;0, T]. Then every 
(finitely generated)free right R-module satisfies n-ace. 

Proof. Let A = [0,M;0, T] and B = IS, M;0,0]. Then A and B are ideals of  R, AB = 0, 
R/A TM S and R/B ~- T. Apply Proposition 3.10. [] 

Corollary 3.11 has the following immediate consequence. 

Corollary 3.12. Let K be a fieM and let S be a K-algebra such that every (finitely 
generated) free right S-module satisfies n-ace, for some fixed positive integer n. Let 
M be any left S-module and let R = [S,M;O,K]. Then every (finitely generated)free 
right R-module satisfies n-ace. 

Corollary 3.13. Let K be a field and let S be a right and left Noetherian K-algebra. 
Let M be any left S-module and let R = [S,M;O,K]. Then every free right R-module 

satisfies pan-ace. 
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Proof.  By Corollary 3.12 and [11, Corollaire 3.3]. [] 

Example  3.14. Let K be a field and let S be a simple right and left Noetherian 
K-algebra which is not Artinian, let U be any simple left S-module and let R = 
[S, U; 0, K]. Then 

(i) R is a left Noetherian ring, every finitely generated free left R-module is 
Noetherian but not every free left R-module satisfies 1-acc. 

(ii) Every free right R-module satisfies pan-acc. 

Proof.  (i) By [9, 1.1.7] and [11, Proposition 3.4]. 
(ii) By Corollary 3.13. [] 

Now taking K, S as in Example 3.14 and U a simple fight S-module, let R denote 
the ring [K, U; 0, S]. Let A = [0, U; 0, S] and B = [K, U; 0, 0]. Then A and B are ideals 
o f  R and AB = 0. Moreover. R/A -~ K, so that R/A is fight perfect, RIB -~ S, so that 
every free right (R/B)-module satisfies pan-acc [1 l, Corollaire 3.3], but not every free 
right R-module satisfies 1-acc [11, Proposition 3.4]. Compare Proposition 3.10. Note 
also that in this case if C = BA = [0, U;0 ,0]  ¢ 0, then C 2 = 0 and R/C ~- S ®K,  so 
that every free right (or left) (R/C)-module satisfies pan-acc. 

Many more examples can be produced using Corollary 3.11. For example, let S be 
a commutative Noetherian domain with field of  fractions L, let K be any extension 
field of  L and let V be any vector space over K. Then the ring R = [S, V; 0,K] has 

the property that every free right R-module satisfies pan-acc (Corollary 3.1 1 and [11, 
Corollaire 2.3]). Note that R is right Noetherian if and only if R is right Goldie if and 
only if V is finite dimensional over K [9, 1.1.7]. 

Our next aim is to give an example of  a commutative domain R such that every 
free R-module satisfies pan-acc but the polynomial ring R[t] does not satisfy 2-acc. In 
contrast we have the following elementary fact. 

Proposit ion 3.15. Let R be a domain which satisfies right 1-acc. Then the polynom&l 
rin9 R[t] satisfies right 1-acc. 

Proof.  Let S denote the ring R[t]. For any polynomial f ( t )  in S, let 6( f ( t ) )  denote 
the degree of  f ( t )  and, if  f ( t )  ~ O, let ) . ( f ( t ) )  denote the leading coefficient of  f ( t ) .  

Let f l ( t ) S C f 2 ( t ) S  C_f3(t)S C . . .  be any ascending chain of  principal right ideals 
o f  S. Then 6(f l ( t ) )  >_ 6(f2(t)) >_ 6(f3(t)) >_ . . . ,  so that without loss of  generality we 
can suppose that all the polynomials f , ( t )  are nonzero with the same degree. 

Moreover, )~(fl(t))R C 2(f2(t))R C_ 2(f3(t))R C_... so there exists a positive integer 

n with 2(fn(t))R = 2(fn+l(t))R = 2(fn+2(t))R . . . .  It is now easy to check that 
f~(t)S = fn+l(t)S = fn+z(t)S . . . .  . Thus S satisfies right 1-acc. 

Example  3.16. Let K/L be a nonalgebraic field extension and let R denote the sub- 
ring L + xK[x] of  the polynomial ring K[x]. Then R is a commutative domain such 
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that every free R-module satisfies pan-acc  but the polynomial ring R[t] does not 
satisfy 2-acc. 

Proof.  Let T denote the ring R[t]. Note first that every free R-module satisfies pan-acc 

by Corollary 3.8 (take S = K[x], T = L and A -- xK[x]).  There exists an element a in 
K such that a is not algebraic over L. For each positive integer n, 

x2a n : ( x2a  n+l )t - (xat -- x ) x a  n E (x2a n+I, xat  -- x) .  

Consider the chain of  2-generated ideals o f  T: 

(x2 a, xat  - x )  C_(xZ a2,xat  - x )  C_ (x2 a3,xat  - x )  C_ . . . . (1) 

Now suppose that x2a n+l E (x2a n, x a t -  x) ,  for some positive integer n. There exist 
u, v in T such that 

x2a n+~ : xZanu + (xat - x)v.  

Setting t = 1/a, we have 

x2a n+l = xZan(do + d l ( 1 / a )  + d2(1/a)  2 + . . .  + dm(1/a)  m) 

for some m _> 1, di  E R (0 < i < m). Hence 

a m+l = doa m + d l a  m-I + " "  + dm. 

For each 0 < i < m, there exist ci E L, f i ( x )  E K[x] such that di  : ci q - x f i ( x ) .  It 
follows that a m+l : co am -}- Cl am-I -~- . . .  q- Cm, a contradiction. Thus every inclusion in 

the chain (1) is proper and hence the ring T does not satisfy 2-acc. [] 

Note that in Example 3.16 the ring R[t] is isomorphic to the subring L[t] + xK[x, t] 

of  the polynomial ring S = K[x, t]. The ring S is a commutative Noetherian domain 
and every free S-module satisfies pan-acc.  [11, Corollaire 2.3]. Moreover, the ring R[t] 

has as a subring the ring S r = L + xK[x, t] .  By Corollary 3.8 every free S ' -module  
satisfies pan-acc.  This indicates how vital it is to have a right perfect subring involved 

in the constructions in this section. 

4. Torsionless modules 

Let R be a ring and let M be a right R-module. The module M is called torsionless 

provided for each 0 ¢ m C M there exists f E HomR(M,R) such that f ( m )  ¢ 0 

(see, for example, [9, 3.4.2]). It is easy to see that this is equivalent to saying that M 
embeds in a direct product of  copies of  RR. Note that if  U is any left R-module then 

the right R-module HomR(U,R) is torsionless (see [9, 3.4.2]). 
Let R be a fight Noetherian right nonsingular ring. Then every torsionless fight 

R-module satisfies pan-acc  (see [3, Theorem 1.5] or [11, Corollaire 2.3]). In this section 
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we shall give some examples of tings which need not be right Noetherian but for which 
every torsionless right module satisfies pan-acc. 

Proposition 4.1. Let R be a subring o f  a ring S and let A be an ideal of  R such that 
A is a left ideal of  S and the ring R/A is right perfect. Suppose further that there 
exists a positive integer n such that every torsionless right S-module satisfies n-acc. 
Then every torsionless right R-module satisfies n-acc. 

Proof. By the proof of  Proposition 3.1 with the direct product (RR) t replacing the 
direct sum (RR) (I). [] 

In a similar way, the proof of Proposition 3.2 can be adapted to give: 

Proposition 4.2. Let R be a subring o f  a rin 9 S and let A be an ideal o f  R such that 
A is a finitely generated right ideal of  S and the ring R/A is right perfect. Suppose 
further that every torsionless right S-module satisfies pan-acc. Then every torsionless 

right R-module satisfies pan-acc. 

Corollary 4.3. Let R be a subring of  a right Noetherian right nonsingular ring S and 

let A be an ideal of  R such that A is a left or right ideal of  S and the ring R/A is 
right perfect. Then every torsionless right R-module satisfies pan-acc. 

Proof. By Propositions 4.1 and 4.2 and [ l l ,  Corollaire 2.3]. [] 

Another consequence of Propositions 4.1 and 4.2 is the following result. 

Corollary 4.4. Let T be a right Noetherian right nonsingular ring and let B be any 
ideal o f T  such that the ring T/B is right Artinian. Let R denote the subring T +xB[x] 
o f  the polynomial ring T[x]. Then ever)' torsionless right R-module satisfies 

pan-acc. 

Proof. I f  E is an essential right ideal of the polynomial ring S = T[x] then the set E I 
of  leading coefficients of  the elements of  E, together with 0, forms an essential right 
ideal of T. It follows that the ring S is right Noetherian right nonsingular. Let L denote 
the ideal xS of S. Note that S = T + L .  Let A = B +xB[x] = SB. Then A C_R and A 
is an ideal of S. Moreover, the ring R/A is a homomorphic image of T/B, so is right 
Artinian. By Corollary 4.4, every torsionless right R-module satisfies pan-acc. 

It is now clear that the results of Section 3 can be adapted to give corresponding 
results for torsionless modules. We now prove an analogue of Proposition 3.10. 

Proposition 4.5. Let A and B be ideals of  a ring R such that AB = O, the ring R/B is 
right perfect and every torsionless right (R/A)-module satisfies n-acc, for some fixed 
positive &teger n. Then every torsionless right R-module satisfies n-acc. 
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Proof. Let F = (RR) I, for any nonempty index set I. Let R' = R/A and A* = A I. 

Then F/'A* ~ (R~,) ~, which is a torsionless right R/-module. Now the result follows 
by the proof of Proposition 3.10 because A*B = O. [] 

Corollary 4.6. Let K be a field and let S be a right Noetherian right nonsingular 

K-algebra. Let M be any left S-module and let R = [S,M;O,K]. Then every torsionless 

right R-module satisfies pan-acc. 

Proof. This result follows from Proposition 4.5 in essentially the same way that 
Corollary 3.12 follows from Proposition 3.10, by using [11, Corollaire 2.3]. [] 
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